1- Department of Philosophy, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
2- Department of Philosophy, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran , hojatima@modares.ac.ir
Abstract: (1392 Views)
Is Meinongian dicopulation justified? This is the main problem in this paper and our hypothesis is that Meinongian dicopulaism is counterintuitive. This is despite the rich list of syntactic and semantic features that Meinongian advocates of the double copula strategy attribute to the Meinongian (internal/encoding) mode of predication in contrast with the ordinary mode of predication. That is what we demonstrate in this paper. We argue that neither of the requirement that Meinongian formulas (i.e. those containing the Meinongian mode of predication) must be monadic; nor that they resist lambda abstraction; nor that logical closure governs them; nor that they can be incomplete (or inconsistent) and nor that they are no way contingent, may succeed in discriminating Meinongian from ordinary predications. Nonetheless, dicopulaistic semantics support our intuitive understanding of abstract objects as sets of properties only whence they embrace the counterintuitive conception of multiple denotations; of either copulas or (abstract) objects. Meinongian dicopulaism does not work.
Article Type:
Original Research |
Subject:
Philosophy of Language (Analytical) Received: 2022/04/30 | Accepted: 2022/08/23 | Published: 2022/09/19
* Corresponding Author Address: Department of Philosophy, Tarbiat Modares University, Jalal-e-Al-e-Ahmad Hwy, Tehran, Iran. Postal Code: 1411713116 |
References
1. Castañeda HN (1974). Thinking and the structure of the world. Philosophia. 4(1):3-40. [
Link] [
DOI:10.1007/BF02381514]
2. Castañeda HN (1975). Identity and sameness. Philosophia. 5(1-2):121-150. [
Link] [
DOI:10.1007/BF02380835]
3. Castañeda HN (1978). Philosophical method and the theory of predication and identity. Noûs. 12(2):189-210. [
Link] [
DOI:10.2307/2214692]
4. Castañeda HN (1990). Forms of predication. In: Jacobi K, Pape H, editors. Thinking and the structure of the world. Berlin: de Gruyter. pp. 491-494. [German] [
Link] [
DOI:10.1515/9783110850970.491]
5. Clark R (1978). Not every object of thought has being: A paradox in naive predication theory. Noûs. 12(2):181-188. [
Link] [
DOI:10.2307/2214691]
6. Fine K (1984). Critical review of Parsons' "non-existent objects". Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition. 45(1):95-142. [
Link] [
DOI:10.1007/BF00372993]
7. Griffin N (2017). Nuclear and extranuclear properties. IfCoLog Journal of Logics and their Applications (FLAP). 4(11):3629-3658. [
Link]
8. Hamtaii H, Hodjati SMA, Nabavi L (2021). The Unity of The Encoding Proposition. Logical Studies. 12(2):57-84. [Persian] [
Link]
9. Jacquette D (1996). Meinongian logic: The semantics of existence and nonexistence. Berlin: De Gruyter. [
Link] [
DOI:10.1515/9783110879742]
10. Orillia F (2013). Guise theory revisited. Humana Mente. 6(25):53-75. [
Link]
11. Orilia F, Paoletti MP (2022). Properties. The Stanford Encyclopedia of Philosophy (Spring 2022 Edition). Available from: https://plato.stanford.edu/archives/spr2022/entries/properties/. [
Link]
12. Paśniczek J (1993). The simplest Meinongian logic. Logique Et Analyse. 36(143/144):329-342. [
Link]
13. Paśniczek J (1994). Ways of reference to Meinongian objects: Ontological commitments of Meinongian theories. Logic and Logical Philosophy. 2(5):69-86. [
Link] [
DOI:10.12775/LLP.1994.005]
14. Paśniczek J (1998). The logic of intentional objects: A Meinongian version of classical logic. Dordrecht: Kluwer. [
Link] [
DOI:10.1007/978-94-015-8996-3]
15. Rapaport W (1978). Meinongian theories and a Russellian paradox. Noûs. 12(2):153-180. [
Link] [
DOI:10.2307/2214690]
16. Zalta EN (1983). Abstract objects: An introduction to axiomatic metaphysics. Dordrecht: D. Reidel. [
Link] [
DOI:10.1007/978-94-009-6980-3]
17. Zalta EN (1992). On Mally's alleged heresy: A reply. History and Philosophy of Logic. 13(1):59-68. [
Link] [
DOI:10.1080/01445349208837194]
18. Zalta EN (1997). The modal object calculus and its interpretation. In: de Rijke M, editor. Advances in intensional logic. Dordrecht: Kluwer Academic Publishers. pp. 249-279. [
Link] [
DOI:10.1007/978-94-015-8879-9_9]
19. Zalta EN (1999). Principia Logico-Metaphysica (Draft/Excerpt); Revision of February 10, 1999. Available at: http://mally.stanford.edu/principia.pdf. [
Link]
20. Zalta EN (2021). Principia Logico-Metaphysica (Draft/Excerpt); Revision of October 13, 2021. Available at: http://mally.stanford.edu/principia.pdf. [
Link]